

Оценка экологических показателей сжигания перспективных водоугольных композиций

Авторы: Няшина Г.С., Дорохов В.В., Стрижак П.А.

Национальный исследовательский Томский политехнический университет E-mail: gsn1@tpu.ru

Аннотация: Уголь по-прежнему остается перспективным и широко используемым энергетическим ресурсом во всем мире. Создание композиционных и смесевых топлив на основе угольных отходов является одним из перспективных вариантов использования энергетически потенциального сырья, утилизации отходов и снижения экологической нагрузки. В данной работе представлены результаты экспериментального исследования по регистрации концентраций основных газовых компонентов (CO_2 , CO_3 , CO_3), выделяющихся при термическом разложении топливных компонентов по отдельности и в составе суспензионных топлив.

18000

15000

12000

6000

3000

900

800

1000

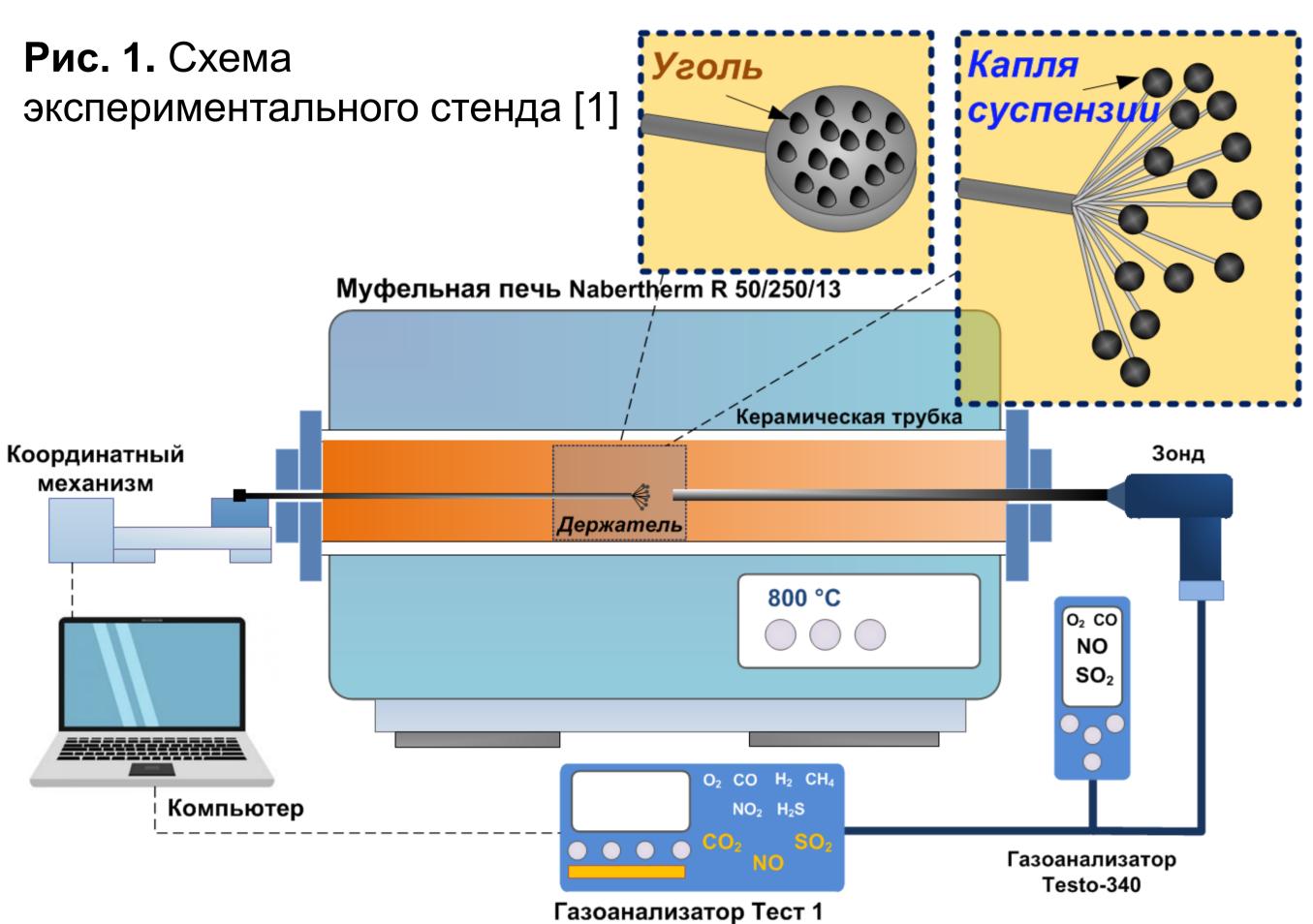


Таблица 1. Результаты технического, элементного анализа компонентов

Компоненты	W ^a , %	A ^d , %	V ^{daf} ,	Q ^a _{s,V} , МДж/кг	C ^{daf} ,	H ^{daf} ,	N ^{daf} ,	S _t d,	O ^{daf} ,	Рис. 2. Термическ топлива	ое разложение частицы
	Угольные компоненты									TOTISTITIE	Первичный пироли
Уголь марки «Д»	5.17	13.9	41.59	25.79	77.11	5.77	2.62	0.40	14.10	Сушка	
Фильтр-кек марки «Д»	_	36.99	41.47	19.24	73.27	4.9	2.35	0.22	19.26	Топливо	Высушенная
Добавки											частица
Опилки	7.0	1.6	83.4	18.1	52.5	6.58	0.22	-	40.70		
Отработанное турбинное масло	_	0.03	98.9	44.99	85.1	14.1	0.3	0.4	0.1		

⊸— Уголь100% Фильтр-кек 100% - Опилки 100% — Отработанное турбинное масло 100% Фильтр-кек 50%, вода 50% Фильтр-кек 50%, вода 45%, масло 5% CO₂ (%) Фильтр-кек 50%, вода 45%, опилки 5%

 T_g (°C) Рис. 3. Средние концентрации диоксида углерода при варьировании

200

температуры в камере сгорания

— Уголь100% **—** Фильтр-кек 100% **─** Опилки 100% Отработанное турбинное масло 100% **—** Фильтр-кек 50%, вода 50% Фильтр-кек 50%, вода 45%, масло 5% Фильтр-кек 50%, вода 45%, опилки 5% 50

Рис. 6. Средние концентрации оксидов азота при варьировании температуры в камере сгорания

°С варьировалась от 25 до 56%.

Цель настоящей работы – качественное и количественное определение состава газа, образующегося в ходе термического

широком диапазоне температур от 100 до 1000 °C

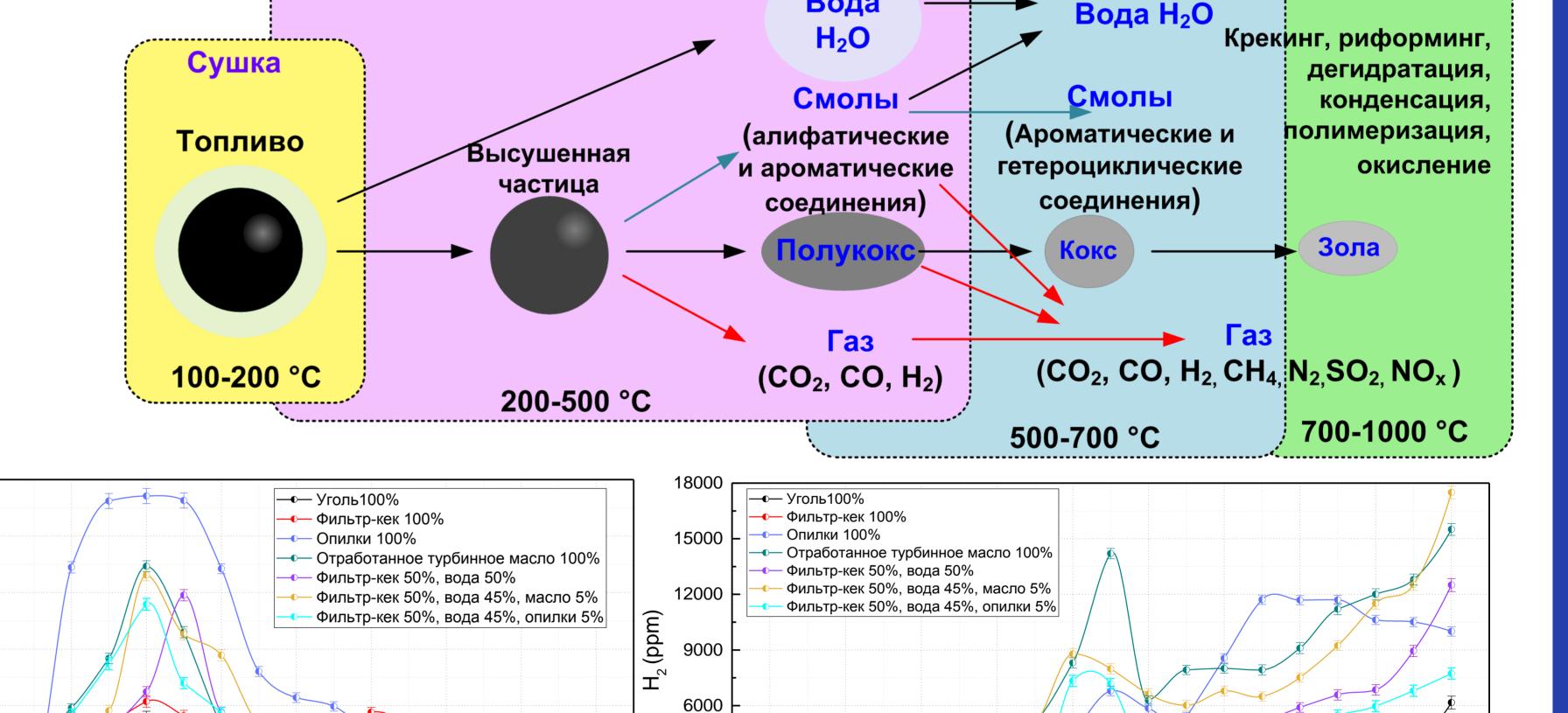
изменения концентраций компонентов газовой смеси на стадиях пиролиза (400–700 °C), газификации (700–900 °C) и сжигания (700–1000 °C). Полученные

Первичный пиролиз

состав газа. Зависимости, выявленные в ходе исследования, могут быть полезны для инженерных приложений использования суспензионных водосодержащих топлив для применения на разных типах установках (пиролиза, сжигания, газификации).

Основной источник SO₂

Антропогенные выбросы


Вторичный пиролиз

Основной источник NO,

Горение

Газификация

600-900 °C

3000

Вода

 T_g (°C) Рис. 4. Средние концентрации монооксида углерода при варьировании температуры в камере сгорания

 T_g (°C) Рис. 5. Средние концентрации водорода при варьировании температуры в камере сгорания

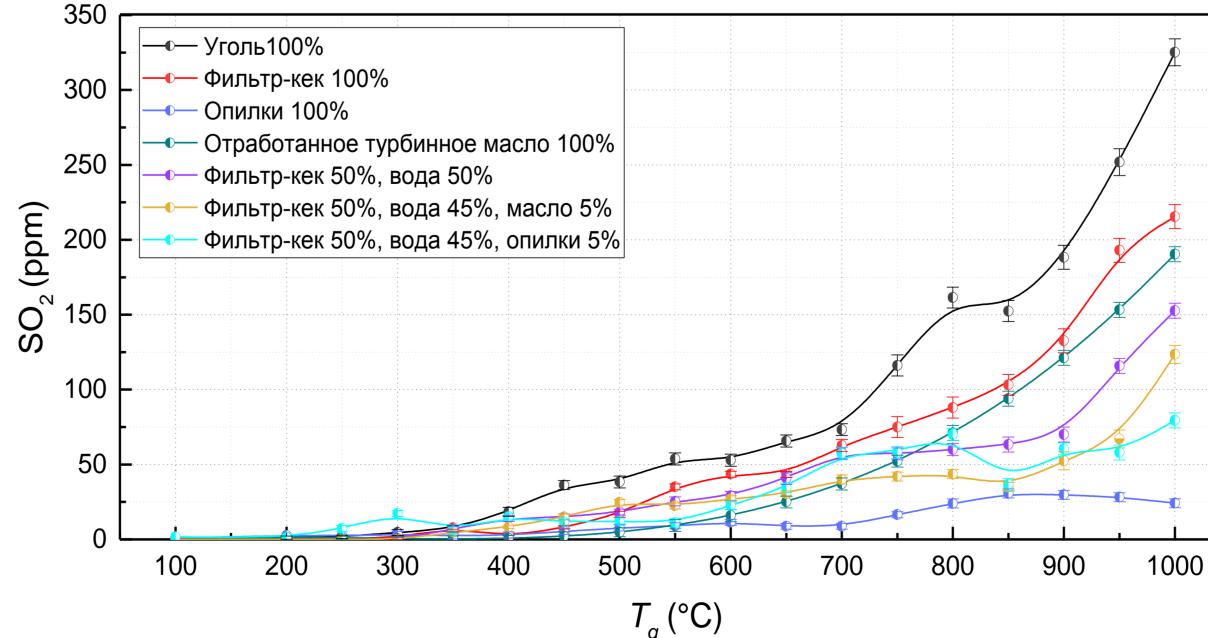


Рис. 7. Средние концентрации оксидов серы при варьировании температуры в камере сгорания

 $C+H_2O\rightarrow CO+H_2$; $C+CO_2\rightarrow 2CO$; $CH_4+H_2O\rightarrow CO+3H_2$ $CO+H_2O\rightarrow CO_2+H_2$ Рис. 8. Реакции восстановления оксида серы

 $SO_2+3H_2\rightarrow H_2S+2H_2O$, SO₂+3CO→COS+2CO₂

 $SO_2+NaOH+1/2O_2\rightarrow Na_2SO_4+H_2O$

Рис. 9. Реакции восстановления оксида азота $NO+CO\rightarrow N+CO_2$ $NO+N\rightarrow N_2+O$; Топливный азот N $2NO+H_2\rightarrow 2HNO$, $2HNO+H_2\rightarrow 2H_2O+N_2$; $NO+4H_2+O_2\rightarrow N_2+4H_2O_1$ + CO, NH₃, H₂, Fe₂O₃

 $Fe_2(SO_4)_3 \rightarrow Fe_2O_3 + 3SO_3 (700 °C)$ [1] Dorokhov V.V., Kuznetsov G.V., Nyashina G.S., Strizhak P.A. Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing

[2] Akhmetshin M.R., Nyashina G.S., Strizhak P.A. Comparative analysis of factors affecting differences in the concentrations of gaseous anthropogenic emissions from coal and slurry fuel combustion // Fuel (IF=5.578, Q1). 2020. V. 270. Article number 117581.

3. С точки зрения основных антропогенных выбросов (NO_x, SO₂) горение суспензий также оказалось экологичнее угля на 20-77% в зависимости от температурных условий и состава топлива. Максимальный **положительный эффект** от применения в составе водоугольных суспензий **добавок** биомассы достигался в температурном диапазоне от 850 до 1000 °C.

Выводы

2. Показано, что применение водосодержащих топлив на стадии пиролиз характеризуется повышенными (до 96%) концентрациями основных

Интенсивное выделение диоксида углерода регистрировалось при температурах свыше 550 °C на стадия вторичного пиролиза и в момент начала

активного горения. Разница в концентрациях CO₂ между суспензиями и сухими угольными топливами для температурного диапазона 700–1000

Исследования, связанные со сжиганием суспензий, выполнены при поддержке гранта Минобрнауки России, Соглашение № 075-15-2020-806 (Контракт № 13.1902.21.0014. Изучение процессов пиролиза производилось при поддержке гранта РФФИ № 19-53-80019.

горючих газов (CO, H₂), причем температуры достижения пиковых значений ниже на 50-100°C, в сравнении с каменным углем.

[3] Nyashina G.S., Vershinina K.Y., Shlegel N.E., Strizhak P.A. Effective incineration of fuelwaste slurries from several related industries // Environmental Research (IF=5.715, Q1). 2019. V. 176. Article number 108559.

petrochemicals // Environmental Pollution (IF=6.792, Q1). 2021. 285. Article number 117390.