
Всероссийская конференция «XXXVII Сибирский теплофизический семинар», 14–16 сентября 2021, Новосибирск

tpu.ru

Характеристики совместной утилизации угольных и растительных отходов при сжигании в виде пеллет, слоя и капель суспензий

Вершинина К.Ю.

Дорохов В.В.,

Романов Д.С.,

Стрижак П.А.

Исследование поддержано грантом Министерства науки и высшего образования Российской Федерации, Соглашение №075-15-2020-806 (договор №13.1902.21.0014)

Актуальность исследования

Скорость накопления промышленных отходов с учетом калорийности [5-10].

Наименование	Средняя скорость формирования в мире (млн т в год)	Теплота сгорания (МДж/кг)
Отходы нефтяного происхождения	не менее 400	8–40
Отработанные органические жидкости, отходы нефтехимии	не менее 100	20–35
Отходы производства и обогащения каменных углей	не менее 700	5–22
Древесные отходы (опилки, стружка, спил и т.д.)	не менее 180	8–20
Сельскохозяйственные растительные отходы	не менее 3000	4–16
Шлам очистки водопроводных сетей, колодцев, иловые отложения	не менее 130	4–12
Бумага, картон	не менее 180	14–15

- 5. Key world energy statistics 2017. International Energy Agency.
- 6. World Energy Resources. World Energy Council, 2016.
- 7. Junginger M, Goh CS, Faaij A. International Bioenergy Trade: history, status & outlook on securing sustainable bioenergy supply, demand and markets. Springer Science+Business Media Dordrecht; 2014.
- 8. Global waste management outlook. United Nations Environment Programme, 2015.
- 9. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour Technol 2017;245:1194-1205.
- 10. Sludge ManagementOpportunities in growing volumes, disposal restrictions and energy recovery. Global Water Intelligence, 2012.

- L. Global waste management outlook. United Nations Environment Programme, 2015.
- 2. Рынок утилизации отходов. 2018. Национальный исследовательский университет Высшая школа экономики.
- в. Отходы в графиках и диаграммах 3.0. 2012. Секретариат Базельской конвенции. International Environment House.
- 4. World Energy Resources. World Energy Council, 2016.

Актуальность исследования

Низкосортные компоненты и отходы в качестве компонентов топлив

- Прямое раздельное сжигание (моносжигание) [1]
- Совместное сжигание совокупности видов отходов [2,3]
- Сжигание в составе водосодержащей суспензии [4,5]

- 1. Kang S.B., Oh H.Y., Kim J.J., Choi K.S. Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW) // Renewable Energy. 2017. Vol. 113. Pp. 1208–1214.
- 2. Петухов В.Н., Свечникова Н.Ю., Юдина С.В., Горохов А.В., Лавриненко А.А., Харченко В.Ф. Использование отходов флотации угля для энергетических целей в условиях ОАО ЦОФ «Беловская». Кокс и химия. 2016. № 5. С. 38–41.
- 3. Zhou C., Liu G., Fang T., Lam P.K.S. Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue. Bioresource Technology. 2015. No. 175. Pp. 454–462.
- 4. Zhao X., Zhu W., Huang J., Li M., Gong M. Emission characteristics of PCDD/Fs, PAHs and PCBs during the combustion of sludge-coal water slurry. Journal of the Energy Institute. 2015. Vol. 88, No. 2. Pp. 105–111.
- 5. D.O. Glushkov, A.I. Matiushenko, A.E. Nurpeiis, A.V. Zhuikov. An experimental investigation into the fuel oil-free start-up of a coal-fired boiler by the main solid fossil fuel with additives of brown coal, biomass and charcoal for ignition enhancement. Fuel Processing Technology. 2021. V. 223. Article number 106986. DOI: 10.1016/j.fuproc.2021.106986

Цель, новизна и практическая значимость исследования

Настоящая работа фокусируется на экспериментальном исследовании проблем утилизации угольного шлама в комбинации с биомассой и маслами (растительными и индустриальными) при сжигании в виде пеллета, монослоя, капель суспензии.

Научная новизна исследований состоит в комплексном анализе всех основных характеристик процессов воспламенения и горения одних и тех же компонентов, но сжигаемых в разных формах, а именно в виде пеллета, слоя и капель суспензий.

Результаты работы имеют значение для:

- обоснования целесообразности совместного сжигания отходов;
- выявления недостатков и преимуществ разных способов совместного сжигания отходов;
- проектирования котлов и печей, выбора способа подачи и распределения воздуха для горения, систем подачи топлива и удаления шлака и золы.

Компоненты топливных смесей

Базовый компонент: угольный шлам

(отход флотационного углеобогащения, фабрика «Северная» Кузнецкого угольного бассейна).

Добавки:

- сосновые опилки;
- отработанное турбинное масло;
- рапсовое масло.

Табл. 1. Свойства твердых компонентов топлив [1,2]

Компонент	W ^a , %	A ^d , %	V ^{daf} , %	Q, МДж/кг	C ^{daf} , %	H ^{daf} , %	N ^{daf} , %	S _t ^d , %	O ^{daf} , %
Угольный шлам	_	24.46	23.08	24.83	87.20	5.09	2.05	1.02	4.46
Опилки сосновые	6.05	1.5	72.35	18.25	49.56	5.91	0.19	0.64	42.54

Табл. 2. Свойства масел [1,2]

Масло	Плотность при 20 °C	Зольность, %	Температура	Температура	Теплота сгорания,
			вспышки, °С	зажигания, °С	МДж/кг
Турбинное	868	0.03	175	193	44.9
Рапсовое	911	0.03	242	-	39.5

^{1.} K. Vershinina, G. Nyashina, P. Strizhak. Lab-Scale Combustion of High-Moisture Fuels From Peat, Coal Waste and Milled Lignite. Waste and Biomass Valorization. 2021. DOI: 10.1007/s12649-021-01482-2

^{2.} K. Vershinina, S. Shevyrev, P. Strizhak. Coal and petroleum-derived components for high-moisture fuel slurries. Energy. 2021. V. 219. Article number 119606. DOI: 10.1016/j.energy.2020.119606

Подготовка компонентов и образцов смесевых топлив

- Угольный шлам просушивался в муфельной печи при температуре 105 °C в течение 2.5 часов.
- Угольный шлам просеивался для выделения фракции с размером частиц 100–140 мк
- Древесные опилки измельчались в роторной мельнице Pulverissette-14.
- Полученный древесный порошок просеивался для выделения фракции с размером частиц 100-140 мкм.

Табл. 3. Состав топливных смесей с указанием способа сжигания

	Базовые топлива				
100% угольный шлам (пеллет)	100% угольный шлам (слой)	50% угольный шлам, 50% вода (суспензия)			
	Топливные смеси с добавкой турбинного м	асла			
95% угольный шлам, 5% турбинное	95% угольный шлам, 5% турбинное масло (слой)	45% угольный шлам, 50% вода, 5%			
масло (пеллет)	масло (пеллет) турбинное масло (суспензия) Топливные смеси с добавкой рапсового масла				
95% угольный шлам, 5% рапсовое	95% угольный шлам, 5% рапсовое масло (слой)	45% угольный шлам, 50% вода, 5%			
масло (пеллет)	, , ,	рапсовое масло (суспензия)			
	Топливные смеси с добавкой опилок				
95% угольный шлам, 5% опилки	95% угольный шлам, 5% опилки (слой)	45% угольный шлам, 50% вода, 5% опилки			
(пеллет)		(суспензия) _{6/2} 3			

Подготовка компонентов и образцов смесевых топлив

Под слоем топлива понималась сухая смесь компонентов, полученная простым смешиванием.


Под **суспензией** понималась гомогенная текучая смесь жидких и твердых компонентов. Для ее приготовления использовалась магнитная мешалка AIBOTE ZNCLBS-2500.

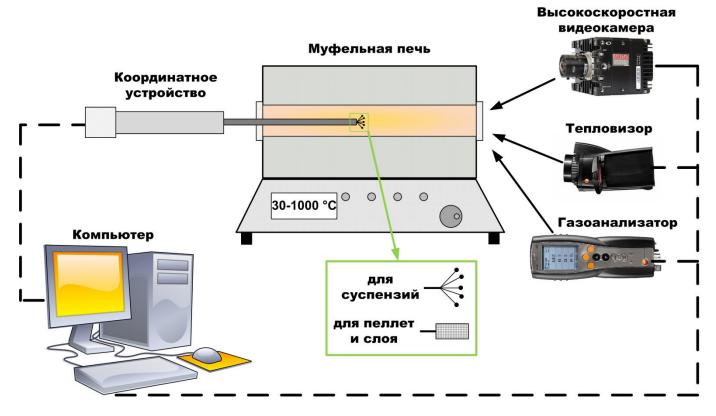
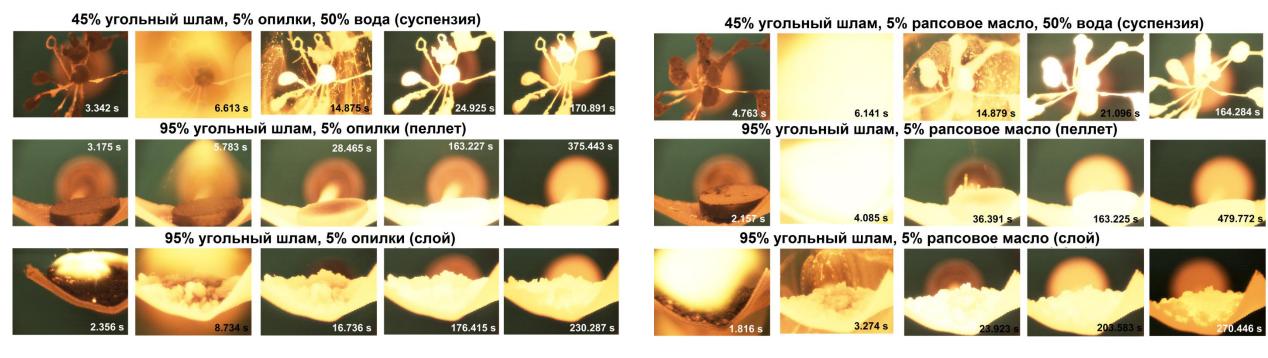

Изготовление пеллет проводилась с помощью пресс-формы и гидравлического пресса.

Рис. 1. Образцы топлива на основе угольного шлама: a — пеллет; b — слой; c — суспензия

Экспериментальный стенд

Рис. 2. Схе	ма экспериментального	о стенда [1,2]
--------------------	-----------------------	----------------


Оборудование	Характеристики
Видеокамера Phantom Miro C110 (совместно с ПО Phantom Camera Control)	Макс. скорость съемки при полном разрешении 1280х1024 - 915 кадр/с. Минимальная скорость съемки - 50 кадр/с. Разрешение: 1280х1024 пикс. Размер пикселя: 5.6 мкм. Размер сенсора: 9.18 мм (диагональ).
Тепловизор Testo 885-2	инфракрасное разрешение 320×240 пикселей; рабочие диапазоны: -30+100 °C (переключаемый); 0+650 °C (переключаемый); 0+650 °C (переключаемый); +350+1200 °C (переключаемый)), погрешность измерения температуры ± 2 °C
Газоанализатор Testo-340 Газоанализатор Test-1	${\rm CO_2-\pm2\%}$ (приведенная погрешность); ${\rm CO-\pm5\%}$ (приведенная погрешность); ${\rm NO,SO_2,CH_4-\pm5\%}$ (относительная ошибка)
Весы аналитические Vibra AF 225 DRCE	дискретность 0.0001 г
Трубчатая муфельная печь (R50/250/13 Nabertherm GmbH)	Рабочая труба из керамики С 530, включая две волоконные заглушки в качестве стандартного оборудования. Температурный диапазон 30-1200 °C. Труба: 50 × 250 мм/

^{1.} D.O. Glushkov, R.I. Egorov, D.M. Klepikov. High-speed contactless measurements of temperature evolution during ignition and combustion of coal-based fuel pellets. International Journal of Heat and Mass Transfer. 2021. V. 175. Article number 121359. DOI: 10.1016/j.ijheatmasstransfer.2021.121359

^{2.} G.V. Kuznetsov, G.S. Nyashina, P.A. Strizhak, T.R. Valiullin. Experimental research into the ignition and combustion characteristics of slurry fuels based on dry and wet coal processing waste. Journal of the Energy Institute. 2021. V. 97. Pp. 213–224. DOI: 10.1016/j.joei.2021.05.001

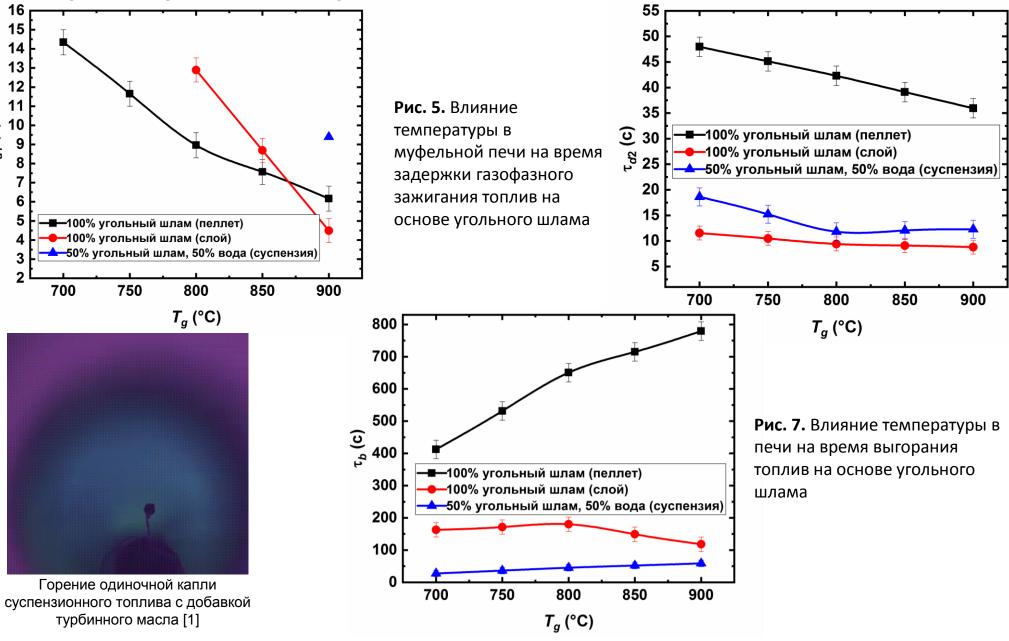
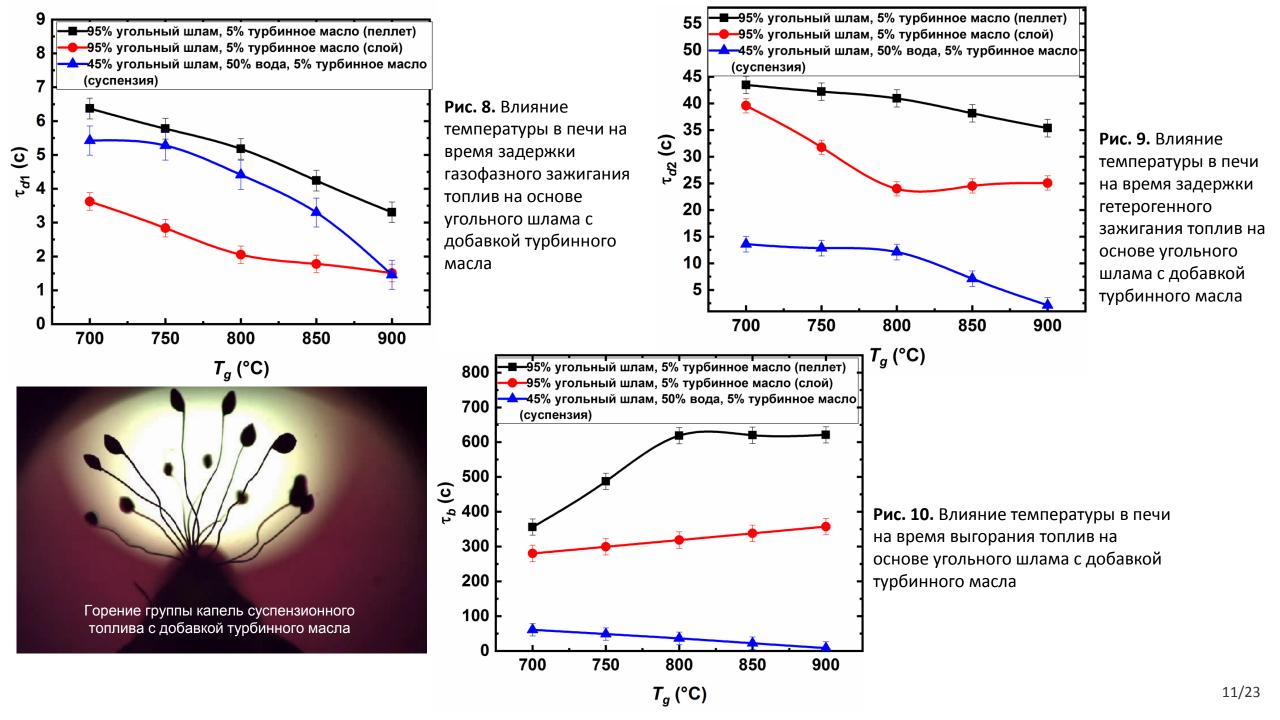
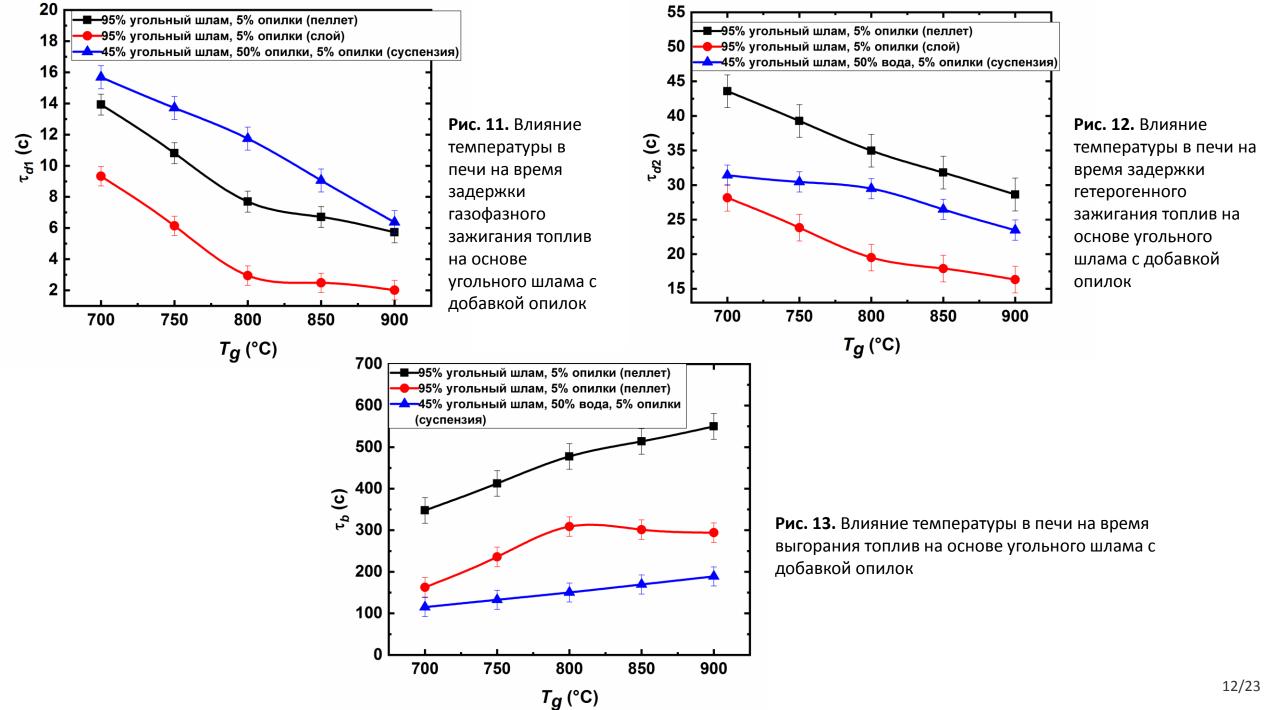
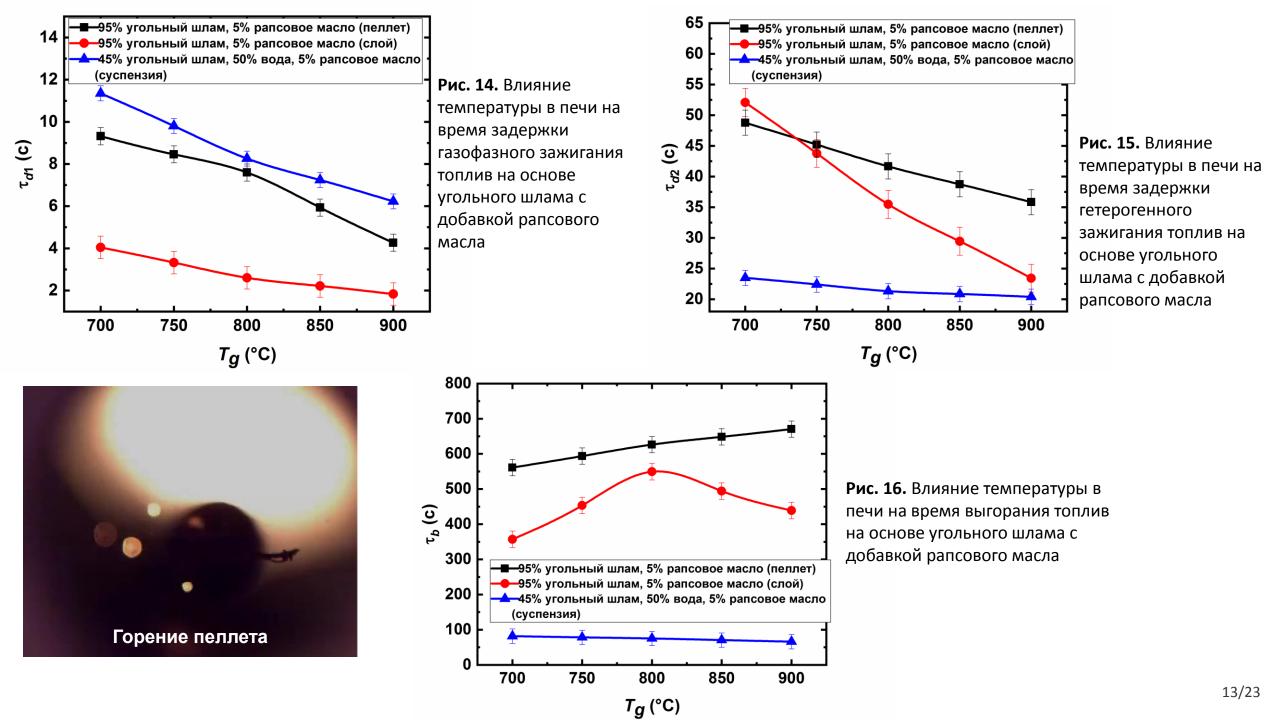
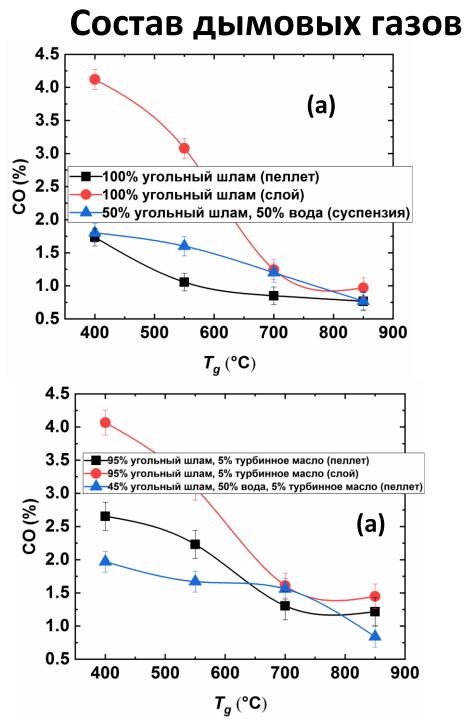
Стадийность зажигания и горения топлив

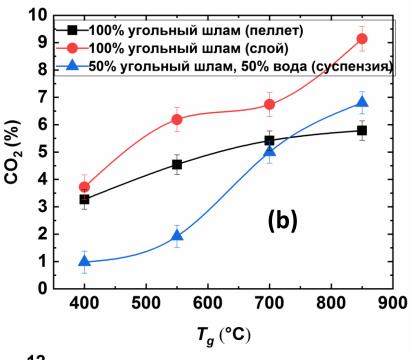
Рис. 3. Кадры горения угольного шлама с добавкой опилок, сжигаемого в виде капель суспензии, пеллета и слоя при 900 °C

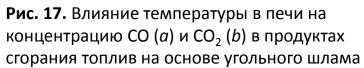
Рис. 4. Кадры горения угольного шлама с добавкой рапсового масла, сжигаемого в виде капель суспензии, пеллета и слоя при 900 °C

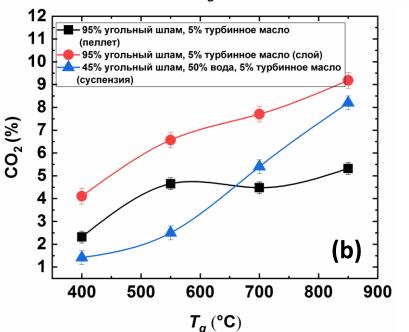
- 1. G.V. Kuznetsov, R.S. Volkov, P.A. Strizhak. Determining water content in a liquid fuel by the luminosity of its droplet. Chemical Engineering Science. 2021. V. 233. Article number 116415. DOI: 10.1016/j.ces.2020.116415
- 2. O.S. Gaydukova, S.Y. Misyura, P.A. Strizhak. Investigating regularities of gas hydrate ignition on a heated surface: Experiments and modelling. Combustion and Flame. 2021. V. 228. Pp. 78–88. DOI: 10.1016/j.combustflame.2021.01.028

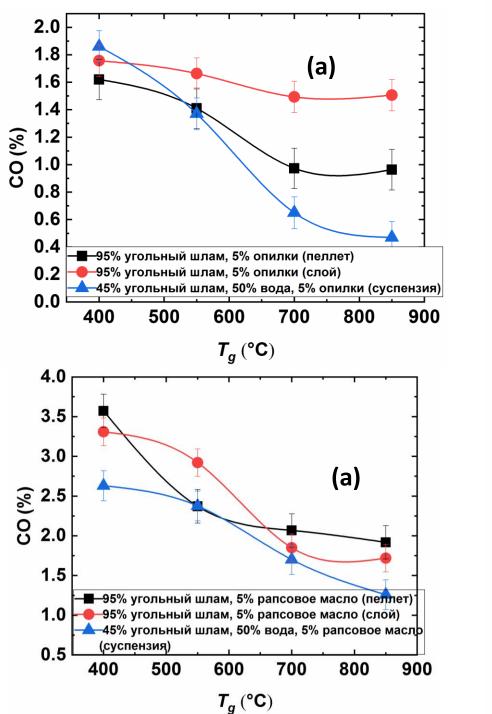
Характеристики процессов зажигания и горения

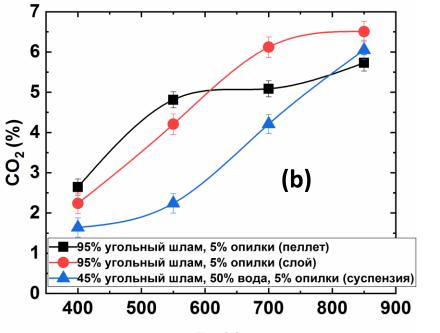






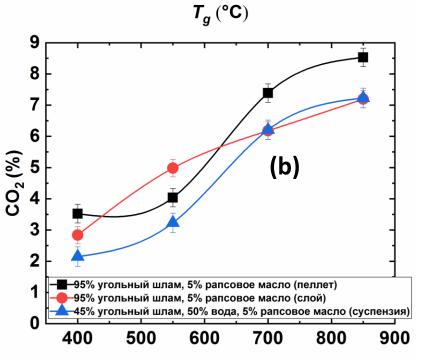

Рис. 6. Влияние температуры в муфельной печи на время задержки гетерогенного зажигания топлив на основе угольного шлама





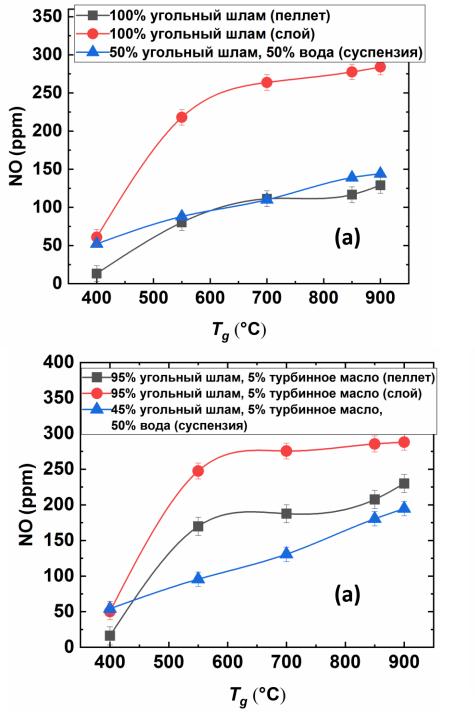





Рис. 18. Влияние температуры в печи на концентрацию СО (a) и СО $_2$ (b) в продуктах сгорания топлив на основе угольного шлама с добавкой турбинного масла

V.V. Dorokhov, G.V. Kuznetsov, G.S. Nyashina, P.A. Strizhak. Composition of a gas and ash mixture formed during the pyrolysis and combustion of coalwater slurries containing petrochemicals. Environmental Pollution. 2021. V. 285. Article number 117390. DOI: 10.1016/j.envpol.2021.117390

14/23



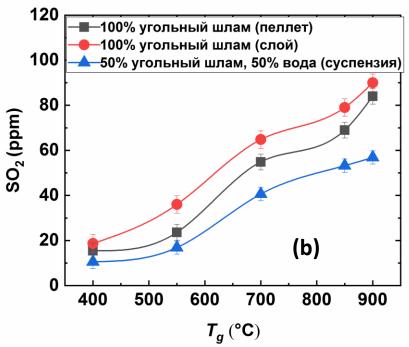
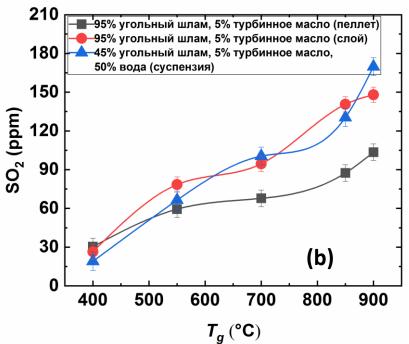
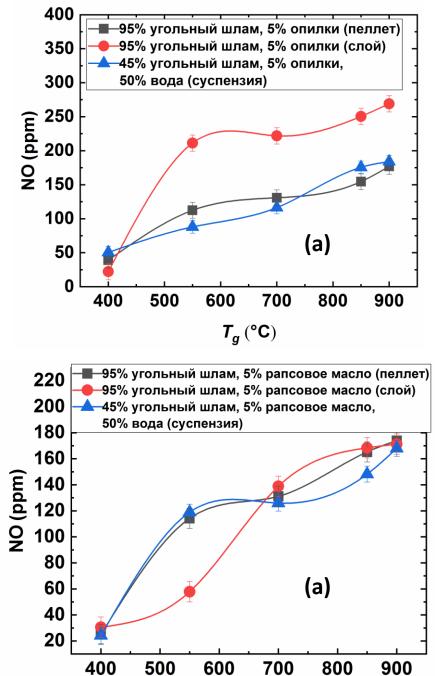

 T_g (°C)

Рис. 19. Влияние температуры в печи на концентрацию СО (a) и СО $_2$ (b) в продуктах сгорания топлив на основе угольного шлама с добавкой опилок


Рис. 20. Влияние температуры в печи на концентрацию СО (a) и $CO_2(b)$ в продуктах сгорания топлив на основе угольного шлама с добавкой рапсового масла



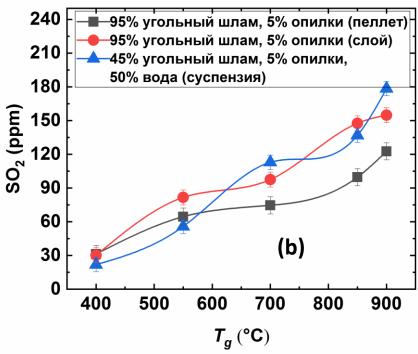

Рис. 21. Влияние температуры в печи на концентрацию NO (a) и SO₂ (b) в продуктах сгорания топлив на основе угольного шлама

Рис. 22. Влияние температуры в печи на концентрацию NO (a) и SO $_2$ (b) в продуктах сгорания топлив на основе угольного шлама с добавкой турбинного масла

 T_g (°C)

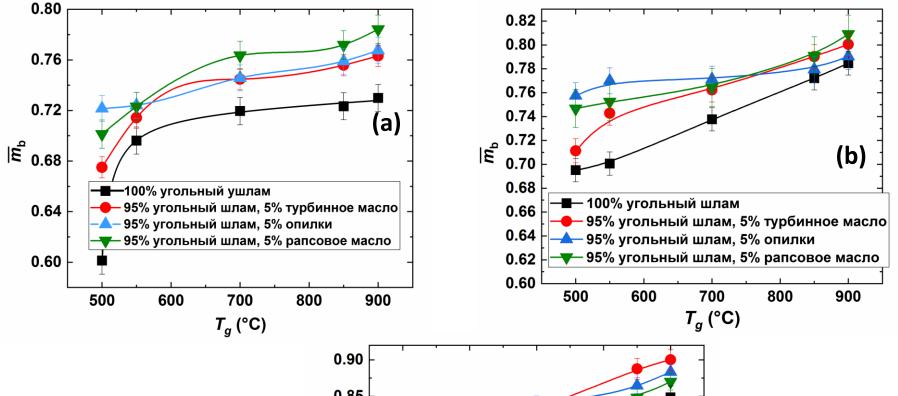
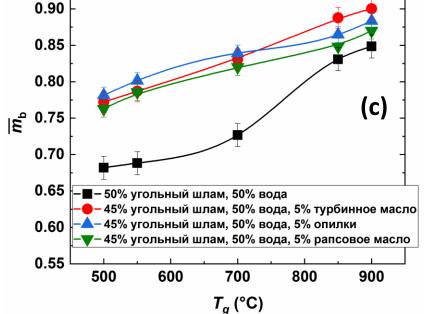

 T_g (°C)

Рис. 23. Влияние температуры в печи на концентрацию NO (a) и SO_2 (b) в продуктах сгорания топлив на основе угольного шлама с добавкой опилок

Рис. 24. Влияние температуры в печи на концентрацию NO (a) и SO $_2$ (b) в продуктах сгорания топлив на основе угольного шлама с добавкой рапсового масла

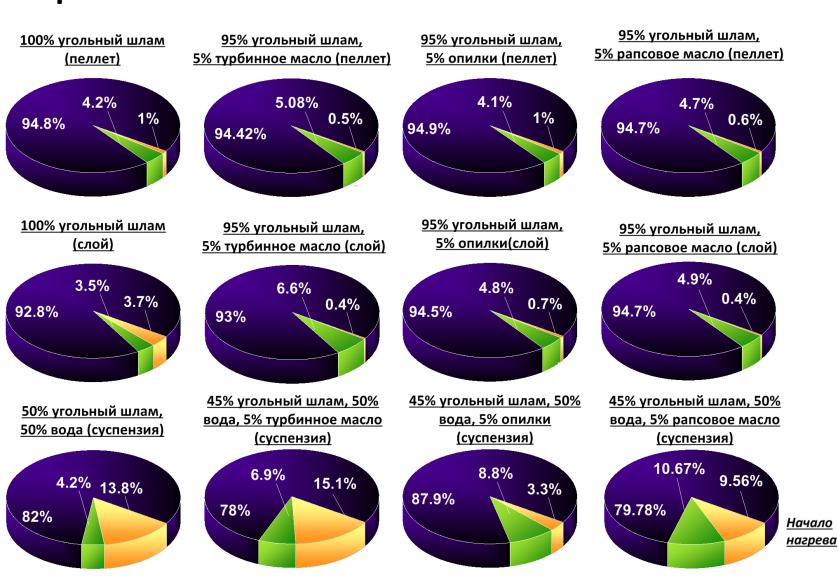

Относительный показатель выгорания

$$\overline{m}_{\rm b} = \frac{m_0 - m_1}{m_0}$$

 $m_{\rm b}$ — относительный показатель выгорания топлива; m_0 — начальная масса топлива, г; m_1 — масса несгоревшего остатка, г.

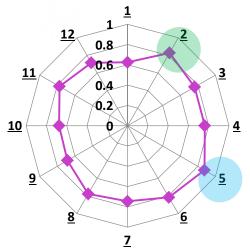
Рис. 25. Влияние температуры в печи на относительный показатель выгорания топлив, сжигаемых в виде пеллет (a), рыхлого слоя (b) и капель суспензий (c)


Температуры зажигания и горения топлив


Табл. 3. Температуры зажигания и максимальные температуры горения топливных смесей.

			университет
	100% угольный шлам (пеллет)	100% угольный шлам (слой)	50% угольный шлам , 50% вода (суспензия)
T _g min	480 °C	480 °C	480 °C
T _d ^{max} (при 700 °C)	959.7 °C	954.8 °C	988 °C
T _d ^{max} (при 800 °C)	1008 °C	1027 °C	1004 °C
T _d ^{max} (при 900 °C)	1014 °C	1109 °C	1051 °C
	95% угольный шлам, 5% турбинное масло (пеллет)	95% угольный шлам, 5% турбинное	45% угольный шлам, 50% вода, 5% турбинное масло
		масло (слой)	(суспензия)
T _g ^{min}	500 °C	450 °C	480 °C
T _d ^{max} (при 700 °C)	980 °C	957 °C	969.4 °C
T _d ^{max} (при 800 °C)	1031 °C	1032 °C	1001.4 °C
T _d ^{max} (при 900 °C)	1068 °C	1085 °C	1058 °C
	95% угольный шлам, 5% опилки (пеллет)	95% угольный шлам, 5% опилки (слой)	45% угольный шлам, 50% вода, 5% опилки (суспензия)
T _g ^{min}	500 °C	500 °C	480 °C
T _d ^{max} (при 700 °C)	993 °C	967 °C	1041.9 °C
T _d ^{max} (при 800 °C)	1033 °C	1032 °C	1035 °C
T _d ^{max} (при 900 °C)	1114 °C	1087 °C	1071 °C
	95% угольный шлам, 5% рапсовое масло (пеллет)	95% угольный шлам, 5% рапсовое	45% угольный шлам, 50% вода, 5% рапсовое масло
	9370 YIONBIBIN MINAW, 370 PARICOBOC MACIO (REINIEI)	масло (слой)	(суспензия)
T _g min	500 °C	480 °C	480 °C
T _d ^{max} (при 700 °C)	962 °C	959 °C	997 °C
T _d ^{max} (при 800 °C)	1048 °C	1038 °C	1015 °C
T _d ^{max} (при 900 °C)	1070 °C	1068 °C	1072 °C 19/2

Соотношение длительности стадий процессов зажигания и горения


Рис. 26. Соотношение длительностей основных стадий, реализующихся при нагреве топлива (температура в муфельной печи около 900 °C)

Относительные показатели эффективности топлив [1]

Nº	Состав	Nº	Состав
1	100% угольный шлам (пеллет)	7	95% угольный шлам, 5% опилки (пеллет)
2	100% угольный шлам (слой)	8	95% угольный шлам, 5% опилки (слой)
3	50% угольный шлам, 50% вода (суспензия)	9	45% угольный шлам, 5% опилки , 50% вода (суспензия)
4	95% угольный шлам, 5% турбинное масло (пеллет)	10	95% угольный шлам, 5% рапсовое масло (пеллет)
5	95% угольный шлам, 5% турбинное масло (слой)	11	95% угольный шлам, 5% рапсовое масло (слой)
6	45% угольный шлам, 5% турбинное масло, 50% вода (суспензия)	12	45% угольный шлам, 5% рапсовое масло, 50% вода (суспензия)

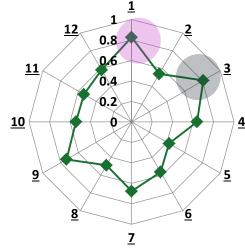

Расчеты проведены по методу взвешенных сумм (Weight Sum Method [2]) с равным приоритетом всех составляющих.

Рис. 27. Относительный показатель энергетической эффективности

Составляющие (при 800 °C):

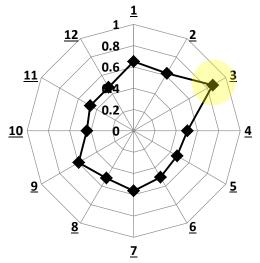

- зольность;
- теплота сгорания;
- относительный показатель выгорания;
- время задержки газофазного зажигания;
- время задержки гетерогенного зажигания;
 - температура зажигания;
 - температура горения.

Рис. 28. Относительный показатель экологической эффективности

Составляющие (при 800 °C):

- CO;
- CO₂;
- NO;
- SO₂.

Рис. 29. Итоговый показатель относительной эффективности (включая стоимость топлива)


^[1] V.V. Dorokhov, G.V. Kuznetsov, K.Yu. Vershinina, P.A. Strizhak. Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making. Energy. 2021. V. 234. Article number 121257. DOI: 10.1016/j.energy.2021.121257

Основные результаты и выводы

- Условия сжигания могут быть критически важными для топлив, приготовленных из низкореакционных компонентов. В частности, угольные шламы достаточно инертны при моносжигании. Их целесообразнее использовать в комбинации с другими компонентами. Состав топливной смеси во многом определяет развитие реакции горения.
- Ускорение газофазного зажигания как минимум в 2 раза происходило при добавлении к угольному шламу добавок в виде турбинного масла, опилок и рапсового масла. Уменьшение длительности эндотермической стадии максимально (в 3–6 раз) при смешении шлама с турбинным маслом. Наименьший эффект зарегистрирован при добавлении в топливную смесь опилок. Добавление турбинного масла в шлам ускоряло протекание эндотермических процессов, но не всегда приводило к более быстрому гетерогенному зажиганию.
- Рапсовое масло уменьшало длительность эндотермической стадии на 50-60%.
- При слоевом сжигании шлама гетерогенное зажигание наступало в 3.3 раза быстрее, чем при сжигании угольного шлама с турбинным маслом.
- Капли суспензии характеризовались достаточно длительным эндотермическим периодом по сравнению с пеллетированным топливом или сухой смесью, сжигаемой в виде рыхлого слоя (разница в 2-4 раза). Это является фактором риска при запуске котла или в переходных режимах эксплуатации. Диффузия кислорода и продуктов горения вне топлива и внутри (в трещинах и порах) может играть определяющую роль на эндо- и экзотермических стадиях, особенно при температуре в печи менее 800 °C.

Основные результаты и выводы

- Минимальная температура устойчивого гетерогенного зажигания исследуемых топлив составила **450–500** °C. Такие температуры можно обеспечить с использованием предтопков и завихрительных элементов.
- Пеллеты характеризовались наибольшей продолжительностью горения (в 3–3.5 раза больше, чем для неспрессованной смеси). Это обусловлено ограничением диффузионного переноса кислорода к внутренним слоям топлива, влияние которого может усилиться за счет постепенного формирования уплотненной зольной оболочки. При промышленном сжигании во избежание неполного выгорания потребуется интенсивное перемешивание топлива с окислителем и повышение температуры в котле.
- Выгорание коксового остатка занимает самую большую долю от времени пребывания топлива в печи. В частности, для суспензий и пеллет эта доля составляла 93–95%, а для капель суспензий значительно меньше 72–88%.
- Каплям суспензий характерно более полное выгорание, чем сухим смесям, сжигаемым в виде пеллета или сухого слоя. Поэтому утилизация угольных шламов в составе водных суспензий может быть перспективной при использовании распылительных технологий.

Спасибо за внимание

Стрижак Павел Александрович доктор физико-математических наук, профессор

Томский политехнический университет

http://tpu.ru, http://hmtslab.tpu.ru,

e-mail: pavelspa@tpu.ru

